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UAV Scheduling via the Vehicle Routing Problem with Time 
Windows 

Amanda L. Weinstein1 and Corey Schumacher2 
Air Force Research Laboratory (AFRL/VACA), Wright-Patterson AFB, OH, 45433-7531 

 
In an urban environment, multiple small unmanned aerial vehicles (UAVs) may be 

utilized to locate, surveil, or attack various targets.  Whatever the task, the air vehicles must 
cooperate by efficiently communicating with each other and optimally assigning each UAV 
to the appropriate task at the appropriate target and at the appropriate time.  In this paper, 
a vehicle assignment algorithm is developed using a mixed integer linear program (MILP) to 
find the global optimal scheduling solution.  The MILP can accommodate both binary and 
continuous decision variables as well as a variety of constraints and objective functions; 
however, the NP-hard nature of the problem implies a dramatic increase in the computing 
complexity as the number of variables and constraints increase.  This formulation accounts 
for an assortment of scenarios focused on the military necessity for precise intelligence, 
surveillance, and reconnaissance (ISR) by modifying the vehicle routing problem with time 
windows (VRPTW) formulation.  The VRPTW is a type of capacitated vehicle routing 
problem which optimally assigns a designated number of delivery vehicles originating at a 
single depot to a known number of customers.  Specifically, the VRPTW and network flow 
techniques account for various scenarios as well as operator imposed timing constraints such 
as precedence constraints.  For example, certain targets may take precedence or require 
simultaneous arrival times where the targets are first hierarchically clustered according to 
their proximity to each other.  Thus, this paper also focuses on methods of clustering targets 
and implements this information into the MILP to optimally assign UAVs to targets.  
Clustering targets that are near enough to alert each other of an attack will allow UAVs to 
recognize this potential and hence surveil these targets simultaneously to avoid early 
detection.  This technique will also prevent targets from being further camouflaged or 
moved once alerted to a nearby attack.  Finally, this paper will directly compare the 
computation times and solutions for the min makespan objective, the minimum total time 
objective, and the total distance minimization. 

 

Nomenclature 
N   =    total number of targets (customers) 
K   =    total number of UAVs (vehicles) 
L   =    total number of launch sites 
C   =    total number of landing sites 
i   =    index for traveling from node i 
j   =    index for traveling to node j 
k   =    index for the vehicle 
xijk =    binary variable indicating whether UAV k traveled from node i to j 
cij =    distance from node i to j  
tijk =    travel time from node i to node j for vehicle k 
ti =    arrival time of UAV at target i  
tjk =    arrival time of UAV k at landing site j  
sik =    service time for node i for UAV k 
rk =    max route time allowed for UAV k 
                                                           
1 UAV Operational Employment Analyst, AFRL/VACA, 2210 8th Street Bldg 146 Room 300 WPAFB, OH 45433 
2 Senior Research Aerospace Engineer, AFRL/VACA, 2210 8th Street Bldg 146 Room 300 WPAFB, OH 45433, 
Associate Fellow. 
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I. Introduction 
mall autonomous unmanned aerial vehicles (UAVs) vary in size and capability.  They can be large enough to be 
powered by an engine or small enough to be battery-powered and may be mistaken for a small bird.  These small 

UAVs are therefore capable of a variety of tasks ranging from reconnaissance to strategic attack.  This paper applies 
a vehicle routing algorithm to an ISR scenario using a small team of UAVs with specific emphasis on an urban 
environment.  Regardless of the task, it is important for a small group of aerial vehicles to become cooperative by 
efficiently communicating with each other and assigning each UAV to a set of targets in an efficient manner. 

Before assigning targets to this team of UAVs, a hierarchical clustering method is implemented to provide 
additional information into the mixed integer linear program (MILP).  Clustering targets in such a manner is not 
computationally intensive, but can in fact, reduce the computational difficulty of the MILP.  In a scenario with many 
teams of UAVs where each UAV from each team must be assigned a target, the target clusters can be used to 
initially dispense each team to a group of targets.  With smaller target clusters, each UAV within a team can be 
assigned to a target cluster.  Although this assignment method is suboptimal if the operator truly desires to minimize 
the total engagement time, it may be adequate given the computational efficiency afforded by such a method or at 
least provide a good initial solution.  Conversely, the operator can take advantage of this information and choose to 
enforce simultaneous arrival times for each target within a cluster.  Clustering targets that are near enough to alert 
each other of an attack will allow UAVs to recognize this potential and hence surveil these targets simultaneously to 
avoid early detection.  This technique will 
also prevent targets from being further 
camouflaged or moved once alerted to a 
nearby attack.    

The assignment of UAVs to targets is 
similar to the Vehicle Routing Problem 
(VRP).  The VRP optimizes the routes a 
vehicle or several vehicles should follow 
when delivering goods to a network of 
customers from a single place of origin, a 
depot.  When assigning UAVs, the customers 
in this case are targets and the depot is the 
launch and landing site.  Figure 1 depicts a 
network diagram of a vehicle routing 
problem as applied to a scenario employing 
two UAVs which must surveil five targets, x1 
through x5.  The distance between each node 
is also represented along each route. 

Previous works have addressed various aspects of these issues.  In Ref. 4 and 7, a Vehicle Routing Problem 
with Time Windows (VRPTW) is developed to minimize both the total distance of the routes and the number of 
vehicles by minimizing the summation of all chosen routes between customers in a supply delivery scenario.   
Whereas this method is sufficient in a pre-mission planning scenario, once the vehicles are launched the vehicle 
minimization objective is not appropriate. 

 Vehicles with the capability to perform multiple tasks are not specifically addressed in Ref. 4 and 7, but the 
MILP nature of the formulation enables this flexibility by adding constraints.  In Ref. 4 and 7, there is only one 
depot since the vehicles will be routinely traveling along their assigned routes.  The combat environment of the 
military in which teams of UAVs will be operating will not necessarily be limited to just one depot or launch site; 
the scenario may require multiple launch and landing sites.  The time windows of the VRPTW will also not 
necessarily be imposed, but an operator may choose to enforce these upper and lower bounds on the target arrival 
times. 

Various other works have discussed the optimal assignment of UAVs required to accomplish multiple tasks for 
each target.3,5,6 Joint and overlapping tasks and limited time windows were imposed in Ref. 3.  In Ref. 5 and 6, a 
MILP formulation for a wide area search munitions team of UAVs was implemented to accommodate a scenario in 
which targets must first be found by the UAVs before they are destroyed.  Each target required three distinct tasks to 
be executed in a specific order.  Varying cost objectives were also considered including minimizing the total flight 
time and minimizing the engagement time, also known as the min makespan objective.5,6  

In Ref. 4 and 7, a VRPTW is developed which incorporates a multi-objective cost function.  The cost function 
places equal weight on minimizing both the number of vehicles and the total distance of all chosen routes.  By 
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American Institute of Aeronautics and Astronautics 

 

3

incorporating decision analysis techniques here such as multi-objective decision making or any type of value-
focused method into the vehicle routing problem, the operator may instill a set of “values” in both the assignment 
process and the vehicles themselves.  These “values” are integrated anytime various weighting schemes are 
incorporated into the objective function. 

The VRP incorporated in all of these previous works is an NP-hard problem with many extensions such as the 
VRPTW and the Multiple Depot Vehicle Routing Problem (MDVRP).  These extensions easily lend themselves to 
UAV task assignment problems; however, because they are NP-hard, the size of the problem and thus the 
computational effort increases exponentially.  This issue is specifically investigated in Ref. 6.  The computation 
times from a variety of scenarios each producing a different number of decision variables and constraints produced 
by the MILP are directly compared in the analysis.6  With five UAVs, four targets, and three tasks per target, the 
computation was terminated because of the excessive computation time.6  A problem formulation, therefore, must be 
created that is robust enough to examine a wide variety of scenarios and accommodate additional operator 
constraints, but must also be computationally efficient.  

II. Scenario 
Assume there are a finite number of targets, and the location of each target is known with certainty.  These 

targets may be located in either an urban environment in a more rigid grid pattern or in a less constrained 
environment where Euclidean distances are used as opposed to rectilinear.  Because the target locations are known, 
the operator can specify target precedence constraints based on their perceived importance.  As previously 
discussed, we can choose to first cluster the targets to allow the targets within a cluster to be attacked or surveilled 
simultaneously. 

In this scenario, assume each target requires exactly one task, for example, either surveillance or attack, and thus 
only one UAV should be assigned to each target.  Suppose there are exactly N targets and a total of K aerial 
vehicles.  Assume K≤  N since the number of targets is known with certainty and each target requires only one 
UAV.  The time to perform each task for each target or the amount of time the UAV will be at each target is called a 
service time.  The service times may be dependent upon the UAV, the target, or both.  Any length of time a UAV 
spends waiting for another UAV is referred to as a wait time. 

Although vehicle routing problems typically require a vehicle to begin and end its route at the same depot 
location, the MILP created here allows vehicles to begin and end at separate launch and landing sites.  This allows 
these small UAVs to be expendable by creating dummy nodes or dummy landing sites.  Should the vehicle be 
detected, this flexibility becomes invaluable because an expendable UAV or any UAV traveling to a landing site 
that is not its launch site will not lead enemy personnel to the person who launched it or the place from which it was 
launched.  A person may also launch the UAV from a location outside of the air base and require the UAV to land at 
the air base once its mission is complete.  Assume there are L launch sites and a total of C landing sites. 

III. Hierarchical Clustering of Targets 
Cluster analysis organizes a finite set of objects or data into subsets that have meaning specific to a certain 

scenario.  There are various methods and computing 
techniques that cluster data in different ways.  
Choosing a preferred method may depend on the 
scenario or it may be based solely on the 
computational efficiency of the algorithm.  Figure 2 
depicts the locations of 5 targets.  Although rather 
simplistic, this example is sufficient to understand 
hierarchical clustering methods used to develop timing 
constraints in the MILP. 

Before choosing a clustering method, a valid 
measurement of distance between objects must first be 
established.  Given an urban environment, the 
rectilinear distance is sufficient to measure distances 
when the vehicle must travel along a type of grid 
pattern typical of streets and tall buildings.  When the 
buildings are shorter and there is no need to follow 
such a rigid path, the Euclidean distance is more 
accurate.  Although many more distance measures 

Figure 2. Grid locations of targets. 
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exist, the Euclidean and rectilinear distances are the most appropriate in this 
scenario.  Once the desired measure of distance is determined, a proximity matrix 
is created which stores the relationships between all objects.2  Table 1 lists the 
proximity of each of the targets given in Figure 2 where the distance is measured 
rectilinearly.   The distances as well as the time it takes to travel these distances 
are assumed to be the same regardless of the direction of travel.  For example, the 
time it takes to travel from target x4 to x5 is equal to the time it takes to travel 
from x5 to x4. 

Clustering methods are classified into different categories.  Exclusive clustering methods ensure each object 
belongs to only one cluster whereas non-exclusive methods allow clusters to overlap and each target can belong to 
more than one cluster.  In this method, each object is measured with a degree of belongingness.  Intrinsic methods 
organize objects based solely on the proximity matrix.  Extrinsic methods use both the proximity matrix and 
category labels.  In this paper, exclusive, intrinsic techniques will be applied to accurately cluster the targets.  Two 
types of exclusive, intrinsic techniques include partitional and hierarchical clustering.  Partitional clustering methods 
partition the objects into two clusters, but hierarchical methods create a nested sequence of partitions.  Since the 
number of UAVs may not be sufficient to cover only two clusters of targets, only hierarchical methods are utilized.  
Throughout the process of the hierarchical clustering method, given some set of N targets denoted X = {x1,…,xN} 
and M clusters denoted {C1,…,CM},  Ci∩ Cj =Φ  where  i,j∈[1,M], i≠  j and C1∪ C2∪…∪ CM = X.0 

Hierarchical clustering methods include both agglomerative 
and divisive methods.  Agglomerative methods begin the process 
of organizing the data by assigning each object to its own cluster 
and continue by merging clusters according to the proximity 
matrix.  Divisive methods are similar to agglomerative but work 
in reverse, beginning by assigning all objects to the same cluster 
and breaking apart the clusters until each object is its own unique 
cluster.2  Both methods will produce the same dendrogram, a 
graphic representation of the clustering method shown in Figure 
3.  The left hand side of the dendrogram gives the proximity at 
which the targets were clustered. 

To produce this dendrogram, the proximity matrix is 
iteratively altered until all of the targets are combined into one 
cluster (using an agglomerative method).  The clustering 
algorithm first finds the two closest targets. In this case, targets x1 and x2 are one mile apart as well as targets x4 and 
x5.  Following the algorithm, x1 and x2 are first combined as it doesn’t necessarily matter which two targets (x1 and x2 
or x4 and x5) are clustered first in this example.  There are various methods of updating the proximity matrix once a 
cluster is formed or altered.  Among these methods are single link, completed link, group average, and minimum 

variance.  Each method can 
produce a different dendrogram.  
Ties, as seen with the distance 
between x1 and x2 and the distance 
between x4 and x5 can significantly 
affect the dendrogram produced 
by the completed link method.  
The dendrogram given in Figure 3 
is created using the single link 
method.  The single link method 
alters the proximity matrix once a 
cluster is created or altered by 
combining the columns and rows 
for x1 and x2 into a single column 
and row for the newly created 
cluster.  The distances are updated 
for the cluster by using the 
smallest distance between x1 and 
x2 to the remaining targets as 
shown in Figure 4.  The remaining 

Table 1. Proximity matrix.
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Figure 4. Updated Proximity Matrix Comparison 
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iterations using the single link to produce the dendrogram in Figure 3 are also shown in Figure 4.  Figure 4 compares 
the single link, completed link, and the group average methods for updating the proximity matrix.  The completed 
link method uses the largest distance to update the proximity matrix whereas the group average method uses the 
average distance of all of the targets within the cluster.0  Although there are no notable differences in the clusters 
themselves, dramatic differences in the clusters are possible when using different methods of updating the proximity 
matrix.  For our purposes as well as ease of computation, the single link method is used to create the target clusters 
for the MILP. 

  The targets that should be observed simultaneously are dependent upon the clusters created by the single link 
hierarchical clustering method.  The number of targets which can be simultaneously surveilled is limited by the 
number of UAVs.  Thus, the cluster size is limited to the number of UAVs available.  It is also possible to specify 
what distance is realistic to require simultaneous arrival times within the clustering program.  In this case, no targets 
outside of the specified proximity will be clustered and no simultaneous arrival time constraints will be enforced for 
these targets.  

Whereas the clustering algorithm here is used to send multiple air vehicles for simultaneous surveillance, the 
method can also be used to group targets and assign different UAVs or groups of UAVs to each cluster 

IV. The Vehicle Routing Problem with Windows 
The vehicle routing problem with time widows (VRPTW) is an extension of the capacitated vehicle routing 

problem (CVRP).  The CVRP schedules K vehicles originating at a singe depot to deliver goods to N customers.  
The CVRP creates a route for each vehicle where a route is a path beginning at the depot, visiting at least one 
customer, and returning to the same depot.7  The capacity or supply of each vehicle is the only additional constraint 
that restricts the vehicles in this type of problem.7  For our purposes, the capacity of the vehicle is unlimited and can 
therefore visit an unlimited number of targets, but the vehicle is constrained by its endurance or maximum flight 
time.  It is possible to compartmentalize the vehicle allowing each vehicle to have various different capacities 
depending on the compartment where compartments can be viewed as different tasks.  This type of strategy can be 
implemented to allow each vehicle to perform more than one task such as classification and reconnaissance.  
Although compartmentalization is not implemented, constraints can be added to the MILP to model the scenario 
where multiple tasks must be accomplished for each target and can be performed by the same or different UAVs.  It 
is also possible to have vehicles with different classifications, for example, certain vehicles can perform one type of 
task where other vehicles can perform another.  These multiple task formulations are shown in Ref. 5 and 6. 

The objective function and all other constraints are typical of the VRP.  Various different objectives or cost 
functions can be applied to all VRPs including the CVRP and VRPTW depending on the scenario.  The assignment 
of vehicles can be optimized by minimizing the path or total distance traveled by all vehicles or by similarly 
minimizing the total travel time of all vehicles.  The situation may demand a slightly different objective including, 
minimizing the total number of vehicles necessary to service all customers within a certain amount of time or to 
ensure all routes are as balanced as possible.7 

The vehicle flow model defines the constraints necessary to characterize the network itself.  One of these 
constraints guarantees that each vehicle is assigned to exactly one route.  The remaining constraints describe the 
flow of the network ensuring each node has exactly one path entering it and one path exiting; however, the depot 
must have K paths exiting and entering it.  Additional constraints must ensure the connectivity of the route and 
eliminate the possibility of any subtours.7 

The VRPTW formulation encompasses all of these constraints as well as additional time window constraints.  A 
typical VRPTW assigns an earliest arrival and latest arrival time for each customer.  The time windows are treated 
as either soft time windows or hard time windows.  Soft time windows are formulated such that a penalty is assigned 
when the customer is not serviced within its time window.  Hard time windows are treated as requirements and the 
solution becomes infeasible if all time windows constraints are not met.7  Although this scenario does not require 
pre-specified time windows, the constraints used to develop the arrival time for each target and ensure simultaneous 
arrival times for targets residing in the same cluster are modeled after the VRPTW time window constraints.  These 
constraints are also necessary to develop precedence constraints for the set of customers or targets. 

An operational scenario may require only one launch site which is also the landing site; however, it may also 
require multiple launch sites and multiple landing sites strategically located separate from the launch sites.  The 
constraints associated with the multiple depot VRP (MDVRP) are applied to the UAV assignment MILP discussed 
in the next section.  The MDVRP incorporates a network with multiple depots where the customers are dispersed 
throughout the network, i.e. they are not each clustered around a specific depot.  Each route must start and end at the 
same depot in the MDVRP because the VRP assumes a scenario of a set of customers with recurring service needs.  
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In a combat scenario, the tasks associated with a set of targets are usually not recurring tasks; however, 
reconnaissance or surveillance needs may or may not be recurring.  Therefore, the MILP does not require UAVs 
begin and end at the same site, but this requirement can easily be specified.    

The CVRP, VRPTW, and MDVRP are just a few variations of the vehicle routing problem among many.  
Aspects of all of these VRP variants can be combined to create a unique VRP formulation that realistically models a 
given scenario.  

V. MILP for UAV Task Assignment 

A. Decision Variables 
The decision variable xijk = 1  if UAV k is assigned to travel from node i to node j, and 0 otherwise; i = 

1,…N+L,  j = 1,…,N,N+L+1,…,N+L+C, and k = 1,…,K.  Thus, the variable i is either a target or launch site and j is 
either a target or landing site.  This eliminates the possibility of an air vehicle traveling directly from the launch site 
to landing site and ensures all UAVs will be utilized. 

The arrival times at each target and each landing site by each UAV account for the remaining decision 
variables.  The variable ti is a continuous variable which indicates the arrival time.  The variable tjk is also a 
continuous variable, but indicates when each UAV will land at each landing site; tjk = 0 when UAV k is not assigned 
to land at landing site i.  Landing site arrival times are distinguished by the vehicle k whereas the target arrival times 
are not because more than one vehicle can land at a single landing site.  This ensures that the specific landing time of 
each vehicle is constrained by the vehicle’s endurance or the maximum flying time.  

The total number of binary decision variables for the MILP is equal to KN(L+C+N-1).  The total number of 
continuous decision variables is equal to N+KC.  

B. Cost Functions 
Various cost functions can be applied to the UAV assignment problem, each with its own advantages and 

disadvantages.  This paper examines three different cost functions.   
 

1) Route minimization/shortest path (total cost of all routes taken). 

Min Total Distance =∑∑∑
= = =

N

i

N

j

K

k
ijkji xc

0 0 1
                  (1) 

where 
⎩
⎨
⎧

=
otherwise   0

 nodeafter   node strikes   UAVif    1 ijk
xijk  

and     cij    =    distance (or cost incurred) when traveling from node i to j  
 

Assume all vehicles must be utilized because, for example, vehicles may be assigned to targets after they 
are airborne.  This ensures one UAV is not assigned to all targets to limit the total distance which would greatly 
increase the time it takes to strike all targets.   

 
2) Minimize the time it takes to cover all targets, also known as min makespan.  

Min   max{ tjk } = makespan                     (2) 
 

The makespan is implemented into the MILP by adding another decision variable, makespan such that: 
 makespan ≤  tjk     [ ] [ ]CLNLNiKk ++++∈∈∀ ,1 ,,1             (3) 

 
Targets are denoted here as the nodes numbered from 0 to N, launch sites are the nodes numbered from N+1 to 
N+L, and landing sites are the nodes numbered from N+L+1 to N+L+C. 
  
3) Minimize the total time it takes for all UAVs to cover all targets. 

Min   Total Time =   
CLN

1Nj 1
∑ ∑

++

++= =L

K

k
jkt                   (4) 
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At first glance, it seems these equations are merely different methods of obtaining the same measurement, but 
they are not, in fact, equivalent.  Equation (1), the shortest path type measurement, can easily be converted to time 
by using the speed of each air vehicle; however, Eq. (1) doesn’t account for service times and thus, doesn’t account 
for the total time and energy required.  Adding service times into the cost function does not increase the 
computational difficulty, but it only ensures the objective function is sufficient when no wait times exist.  Because 
wait times can only be calculated once all routes are chosen, this increases the computing times required to execute 
the MILP.  Minimizing the routes traveled by all of the UAVs is computationally efficient, but is lacking in 
precision and not very robust. 

By minimizing the makespan or the maximum arrival time of all of the air vehicles in Eq. (2), the total time 
required to strike all targets is minimized including travel times, wait times, and service times.  By including the 
wait times for all of the UAVs, the objective functions for Eq. (2) and (4) become computationally more difficult. 

C. Constraints 
The constraints of the MILP define the problem itself.  They ensure that each vehicle is properly tasked and 

they define the set of feasible solutions. 
 
1) Each vehicle that enters a target must also exit. 

[ ] [ ]KkNhxx
N

hii

N

hjj
hjkihk ,1 ,,1   0

,1 ,1

∈∈∀=−∑ ∑
≠= ≠=

              (5) 

 
Equation (5) ensures the same UAV will both enter and exit a target area eliminating the possibility of an 

air vehicle striking a target without exiting.  The total number of constraints this adds to the program is KN. 
 

2) Each target must be visited exactly once. 

[ ]Nix
K

k

N

ijj
jki ,1     1

1 ,1
∈∀=∑ ∑

= ≠=

                    (6) 

 
This constraint ensures that each target is covered by a UAV.  It adds exactly N constraints to the MILP.  

Equations (5) and (6) are formulations described in “Heuristic Methods for Vehicle Routing Problem with Time 
Windows”.7  
 
3) Each UAV must launch from a launch site. 

[ ]Kkx
LN

jiNi

N

j
ijk ,1      1

,1 1

∈∀=∑ ∑
+

≠+= =

                   (7) 

 
Equation (7) ensures that each UAV begins its route by exiting a launch site.8  This constraint adds K 

constraints to the problem formulation. 
 
4) Each UAV must land at a landing site. 

[ ]∑ ∑
=

++

≠++=

∈∀=
N

i

L

ijk Kkx
1

CN

ji L,1Nj     
,1     1                    (8) 

 
Equation (8) adds K constraints to the MILP and ensures that each UAV will complete its route by entering 

a landing site.8 Both constraints 3 and 4 ensure that each vehicle is assigned to exactly one route and that each 
vehicle is therefore utilized.  When these constraints are inequality constraints (less than or equal to one) instead 
of equality constraints, the MILP will allow the possibility of not using all the UAVs available.  This will then 
minimize the number of vehicles utilized as well as the total time or total distance.  This may be useful for 
purposes such as pre-mission planning; however, modifying these constraints also implies that the time it takes 
for the UAVs to cover all targets (the makespan) may increase when the number of vehicles is also minimized.  

 
5) Each target and landing site must have an arrival time. 
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[ ] [ ] [ ] jiKkNjLNitxMstt jijkikijki ≠∈∈+∈∀≤−−++ ,,1,,1,,1     )1(      (9) 

[ ] 0 then ,,1 if =++∈ itLNNi  

[ ] [ ] [ ]KkCLNLNjNitxMstt jkijkikijki ,1,,1,,1 )1( ∈++++∈∈∀≤−−++    (10) 
 

Equation (9) represents the linear time constraints for all the targets and Eq. (10) corresponds to the landing 
sites.  These timing constraints were modified from the timing constraints used by Ombuki, Ross, and Hanshar 
in their paper, “Multi-objective Genetic Algorithms for Vehicle Routing Problem with Time Windows”.4  The 
timing constraints also guarantee that no feasible solution contains subtours.  In this formulation, the variable M 
merely needs to be sufficiently large.  The maximum endurance of each UAV (rk) is guaranteed to be 
sufficiently large and thus, M = rk.  Equation (9) adds NK(N-1+L) constraints whereas Eq. (10) only adds NCK 
constraints.  

 
6) Each UAV must arrive at its landing site within the limits of its maximum endurance. 

[ ] [ ]KkLNNjrt kjk ,1,,1       ∈++∈∀≤                 (11) 
 
The max arrival time constraint adds KL constraints to the MILP. 
 

7) Targets a and b residing in the same cluster or as specified by the operator should have simultaneous arrival 
times. 

[ ]Ncbatt ba ,1,,such that    t c ∈==                  (12) 
 
The number of constraints for Eq. (12) depends on the number of targets requiring simultaneous arrival 

times. 
 
8) Defines specified target precedence for arrival times. 

[ ]Ncbattt cba ,1,,such that   ∈≤≤                  (13) 

[ ] [ ]KkNcbatstst cakbaka ,1,,1,, such that   sak ∈∀∈+≤+≤+         (14) 
 

Similar to Eq. (12), the number of constraints specified by Eq. (13) is dependant upon the specific scenario and 
the precedence order set forth by the operator. Equation (14) ensures the preceding target’s surveillance is complete 
before proceeding where Eq. (13) does not. 

The total number of decision variables for the MILP is KN(L+C+N-1)+N+KC.  The total number of constraints 
can be calculated as NK(N+L+C)+N+2K, but does not include any specified timing constraints from Eq. (12), Eq. 
(13), and Eq. (14). 

D. Extensions 
Various different situations can be represented using this formulation.  Different constraints can be relaxed or 

added to signify different aspects of a specific mission.  We have specified two different timing constraints, 
simultaneous and precedence, in this scenario.  Various other timing constraints may be added to the formulation to 
model a variety of mission requirements.  For example, some targets may require overlapping tasks or different 
types of precedence constraints.  The nature of the targets may require if/then constraints.  For example, if UAV k is 
assigned to target i then it must also be assigned to target j.  This type of constraint is represented in Eq. (15). 

 

∑∑
+

=

+

=

≤
LN

h
hjk

LN

h
hi xx

11
                         (15) 

 
Consider the situation where a solution is infeasible because the number of vehicles is limited or their 

endurance is not sufficient to surveil all targets.  Thus, either the simultaneous timing constraints need to be relaxed 
or the number of targets a UAV team is assigned to needs to be decreased.  The first solution involves using soft 
time windows or timing constraints as opposed to the hard timing constraints previously implemented.  As 
previously discussed, soft time windows merely add a penalty for the degree to which a time window is not 
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Figure 5. Sample target set. 

observed.  Similarly, this type of penalty can be added to all timing constraints.  This will allow the program to 
generate a feasible solution, but slightly penalized for violating a timing constraint that is preferred by the operator.  
Equation (16) shows how arrival penalties may be added to the total time cost function.  The new objective 
incorporates the total time that each vehicle was late to a target with a set arrival time (tiw). 

Total time with penalties =   )(
CLN

1Ni

N

1i1
∑ ∑∑

++

++= ==

−+
L

iwi

K

k
ik ttt               (16) 

 
Equation (17) shows an example cost function with penalties incurred when simultaneous arrival times are not 

met. 

Total time with penalties = ( )∑∑ ∑ −+
++

++= = ussimultaneo  ,

CLN

1Ni 1 ji
ji

L

K

k
ik ttabst             (17) 

 
For the case with multiple tasks, the operator can also place similar penalties or preferences on which tasks are 

more important or if it is most important for all tasks to be completed on one target rather than completing only one 
task on many targets.  These types of values or weighting techniques, derived from the operator, can be implemented 
into the optimization.  

If there are simply too many targets for the UAVs to surveil, a value function can be created to instill these 
objectives and constraints into the formulation.  A value function is a type of weighted multi-objective cost function.    

Different aspects from vehicle routing problems other than the CVRP, VRPTW, and MDVRP can be 
incorporated to account for uncertainty.  The MILP formulation can be modified using aspects from the dynamic 
vehicle routing problem (DVRP) and the stochastic vehicle routing problem (SVRP).  The DVRP is a method of 
assignment that can handle previous tasks as well as new tasks that develop after the vehicles have begun their initial 
routes.  The SVRP handles levels of uncertainty within various aspects of the problem such as uncertainty in a 
target’s required tasks or the location of a target. 

VI. Problem Solution 
Because the number of decision variables and constraints dramatically increases as the number of targets and 

vehicles increases, a simple example is explored to show the formulation and solution.  Consider the case with two 
vehicles and three targets, two of which are close enough (one mile apart) to be clustered and require simultaneous 
arrival times (x1 and x2) shown below in figure 5.  Assume an urban environment where the rectilinear distance is the 
best measurement of distance. 

There are 29 total decision variables of which 24 are 
binary: UAV1:  (x121, x131, x151, x211, x231, x251, x311, x321, 
x351, x411, x421, x431); UAV2:  (x122, x132, x152, x212, x232, 
x252, x312, x322, x352, x412, x422, x432) 

There are 5 continuous variables, target x1 arrival 
time (t1), target x2 arrival time (t2),  target x3 arrival time 
(t3),  landing site x5 arrival time by UAV 1 (t51),  and 
landing site x5 arrival time by UAV 2 (t52).  The 40 
constraints are broken out by the constraint numbers 
listed above. 

 
Constraint 1:  
(x211 + x311) - (x121 + x131) = 0 
(x121 + x321) - (x211 + x231) = 0 
(x131 + x231) - (x311 + x321) = 0 
(x212 + x312) - (x122 + x132) = 0 
(x122 + x322) - (x212 + x232) = 0 
(x132 + x232) - (x312 + x322) = 0 
 
Constraint 2:  
x121 + x131 + x122 + x132 = 1 
x211 + x231 + x212 + x232 = 1 
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x311 + x321 + x312 + x322 = 1 
 
Constraint 3:  
x411 + x421 + x431 = 1 
x412 + x422 + x432 = 1 
 
Constraint 4:  
x151 + x251 + x351 = 1 
x152 + x252 + x352 = 1 
 
Constraint 5: 
UAV 1: 
t1 + t121 – r1(1-x121) ≤  t2 
t1 + t131 – r1(1-x131) ≤  t3 
t2 + t211 – r1(1-x211) ≤  t1 
t2 + t231 – r1(1-x231) ≤  t3 
t3 + t311 – r1(1-x311) ≤  t1 
t3 + t321 – r1(1-x321) ≤  t2 
t4 + t411 – r1(1-x411) ≤  t1 
t4 + t421 – r1(1-x421) ≤  t2 
t4 + t431 – r1(1-x431) ≤  t3 
 
UAV 2: 
t1 + t122 – r2(1-x122) ≤  t2 
t1 + t132 – r2(1-x132) ≤  t3 
t2 + t212 – r2(1-x212) ≤  t1 
t2 + t232 – r2(1-x232) ≤  t3 
t3 + t312 – r1(1-x312) ≤  t1 
t3 + t322 – r1(1-x322) ≤  t2 
t4 + t412 – r2(1-x412) ≤  t1 
t4 + t422 – r2(1-x422) ≤  t2 
t4 + t432 – r1(1-x432) ≤  t3 
 
Constraint 5: 
UAV 1: 
t1 + t151 – r1(1-x151) ≤  t11 
t2 + t251 – r1(1-x251) ≤  t21 
t3 + t351 – r1(1-x351) ≤  t31 
 
UAV 2: 
t1 + t152 – r2(1-x152) ≤  t12 
t2 + t252 – r2(1-x252) ≤  t22 
t3 + t352 – r2(1-x352) ≤  t32 
 
Constraint 6:  
t51 ≤  r1 
t52 ≤  r2 

 
Constraint 7: 
t1 = t2 
 
There are three different approaches to this optimization in terms of the cost function.  Using the shortest path 

minimization, we have the total route distance = x121 + 3x131 + 3x151 + x211 + 2x231 + 4x251 + 3x311 + 2x321 + 4x351 + 
3x411 + 4x421 + 4x431 + x122 + 3x132 + 3x152 + x212 + 2x232 + 4x252 + 3x312 + 2x322 + 4x352 + 3x412 + 4x422 + 4x432.    
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Figure 6. Target locations for method comparison. 
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According to the min makespan objective, we wish to minimize the maximum value of the set, {t51, t52}.  The total 
time minimization has the following objective function, t51 + t52. 

Assume the endurance of each vehicle is 1.5 hours and they both travel with a speed of 25 mi/hr.  The service 
time for each target is 0.25 hours irrespective of the UAV.  We also assume that any targets within one mile of each 
other must have simultaneous arrival times. We compute the solution by implementing the MILP we have created 
into the GNU Linear Programming Kit for the GLPK solver.1 

The simplicity of the example results in no difference between the solutions of the three methods.  In both 
cases, the total distance traveled between targets and the launch and landing site is 16 miles and the latest arrival 
time is .9 hours after launch.  The optimization assigned one UAV to arrive at target x1 in 0.16 hours and then 
complete its path by returning to the landing site within 0.53 hours of its launch.  The second UAV is assigned to 
arrive at target x2 in 0.16 hours which is the same arrival time of target x1 as desired.  The second UAV continues its 
path by arriving at target x3 at 0.49 hours and landing at 0.9 hours from launch.  Because targets x1 and x2 were one 
mile apart, their requirement for simultaneous arrival times was met.  The difference in computation time for the 
three methods is also negligible with such small problems.  The operator can easily apply additional timing 
constraints by specifying a precedence ordering.  For example, when the operator specifies that surveillance on x3 
must be complete before surveillance begins on x1, then the assignment of UAVs changes to accommodate these 
new demands.  With these additional constraints, the first UAV is assigned to arrive at x3 at 0.16 and x2 at 0.49 then 
landing at 0.9.  The second UAV is assigned to arrive at x1 at 0.49 and land at 0.86. 

As mentioned earlier, vehicle routing problems can become increasingly complex and require substantially 
more computing time as the complexity increases.  Table 2 displays computing times given the number of targets, 
vehicles, launch and landing sites as well as additional timing constraints.  The computation times are also separated 
by the three different cost functions, minimizing the total distance of all routes, minimizing the makespan, and the 
minimization of the total time.   

Table 2. Computing time of various examples. 
Targets 

N

Air      
Vehicles  

K

Launch 
Land Launch Land Decision 

Variables Constraints
Computation 

Time(s)      
Distance

Min Max
Computation 

Time(s)      
Makespan

Min Max
Computation 

Time(s)      
Total Time

Min Max

3 2 1 0 0 29 37 0.034 0.028 0.133 0.036 0.033 0.115 0.036 0.022 0.143
4 2 1 2 2 82 88 0.044 0.036 0.161 0.523 0.226 0.888 0.824 0.359 1.295
4 3 0 1 1 67 82 0.051 0.043 0.172 0.093 0.074 0.178 0.093 0.088 0.203
5 2 0 2 1 77 89 0.057 0.036 0.151 0.510 0.339 0.695 0.650 0.419 0.964
5 3 1 1 2 149 161 0.132 0.054 0.519 13.859 3.886 30.898 46.323 18.756 87.424
5 4 0 2 2 173 193 0.200 0.078 1.049 13.692 3.282 34.300 36.140 14.483 75.876
6 3 0 1 2 156 174 0.277 0.060 1.321 16.603 8.037 30.961 51.411 19.019 79.705
6 4 1 2 1 254 278 1.289 0.150 13.919 466.14 101.00 1,397 7,401 3,409 17,506
7 4 1 0 1 267 295 9.499 0.180 111.334
8 4 1 1 1 368 400 41.099 0.792 523.673  

 
In all cases except one shown in table 2, 

the shortest path type method is 
computationally faster than both the min 
makespan and total time methods; however 
these methods do not always produce the same 
solution.  Using a seven target, three vehicle 
example, we can compare the different 
solutions each method produces.  There is only 
one launch site which is the same as the landing 
site for this example.  Figure 6 depicts the 
target locations and launch/landing site. 

Additional simultaneous timing constraints 
were added to this routing problem.  It is 
assumed that the operator desired only vehicles 
that were less than or equal to one mile apart to 
have simultaneous arrival times.  Thus, the 
clustering algorithm assigns targets, x4 and x6 to 
the same cluster.  The clustering also combines 
targets x1 and x2 to the same cluster.  Tables 3 
through 5 show the comparison of the solutions 
generated by each method.    
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Table 4. Solution for min makespan. Table 5. Solution for min total time. 

Table 3. Solution for min total distance.
 
The total distance of the routes traveled by the air vehicles is 30 

miles for the shortest path method, but it is 34 for the min total time 
method and 38 miles for the min makespan method.  Even though the 
route is longer for the min makespan, the latest arrival time at the 
landing site is less than that of the solution for the shortest path 
method.  One reason this occurs is because of the service times 
required for each target.  In this example, the service time for each 
target, regardless of the UAV, is 0.2 hours.  Each air vehicle is 
assumed to travel at a speed of 25 mi/hr with a maximum endurance 
of 1.5 hours. 

Similar to the total distance comparison, the min makespan 
method certainly produces a solution with the shortest makespan at 
1.08 hours after launch.  The last vehicle to arrive when employing 
the total distance method arrives at 1.5 hours after launch, whereas the 
last UAV to arrive for the total time method arrives at 1.24 hours.  
Because the total distance method does not account for service times 
or wait times, this method can get careless with its arrival times.  For 
example, the true makespan of the total distance method is 1.44 not 
1.5 as stated in table 3.  Since the method does not minimize time, it 
only ensures the final arrival times are less than or equal to 1.5 and 
inadvertently adds unnecessary wait times as it did in this example. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
According to the MILP formulation constraints above, each vehicle must be utilized.  The min makespan 

method will inherently use as many UAVs as possible; however, this is not true for the total distance method or the 
total time method as the total time and total distance will generally increase as the number of air vehicles increase.  
By modifying constraints 3 and 4 as previously discussed, we can also minimize the number of vehicles employed.  
Table 6 shows the new solution when these utilization constraints are eliminated.  

Generally, the total distance method will attempt to assign all targets to one vehicle especially when there is 
only one launch and landing site.  The number of UAVs required is dependent upon the size of the clusters and the 
endurance of the vehicles.   The utilization constraint can, in most cases, limit the makespan without becoming 

i j ti/tik Path Distance

8 5 0.08
5 4 1.1
4 9 1.46

i j ti/tik Path Distance
8 1 0.16
1 9 0.48

i j ti/tik Path Distance
8 2 0.16
2 3 0.44
3 7 0.78
7 6 1.1
6 9 1.5

Total Time  
(hrs)

Makespan  
(hrs)

Total 
Distance

Computation   
Time (s)

3.44 30

UAV 2

6

UAV 1

8

UAV 3

16

0.4751.5

i j ti/tik Path Distance

8 6 0.2
6 7 0.56
7 9 1.08

i j ti/tik Path Distance

8 4 0.2
4 1 0.72
1 9 1.04

i j ti/tik Path Distance

8 5 0.08
5 3 0.44
3 2 0.72
2 9 1.08

Total Time  
(hrs)

Makespan  
(hrs)

Total 
Distance

Computation   
Time (s)

10

1.08 38 57.336

UAV 1

16

UAV 2

UAV 3

12

3.2

i j ti/tik Path Distance
8 5 0.08
5 9 0.36

i j ti/tik Path Distance
8 4 0.2
4 3 0.56
3 1 0.88
1 9 1.2

i j ti/tik Path Distance
8 6 0.2
6 7 0.52
7 2 0.88
2 9 1.24

Total Time  
(hrs)

Makespan  
(hrs)

Total 
Distance

Computation   
Time (s)

4

2.8 1.24 34 119.769

UAV 3

16

UAV 2

14

UAV 1



 
American Institute of Aeronautics and Astronautics 

 

13

Table 6.  Unconstrained total distance solution. Table 7.  Unconstrained total time solution. 

i j ti/tik Path Distance

8 2 0.16
2 7 0.48
7 6 0.84
6 9 1.24

i j ti/tik Path Distance

8 1 0.16
1 3 0.48
3 4 0.84
4 5 1.12
5 9 1.4

Total Time  
(hrs)

Makespan 
(hrs)

Total 
Distance

Computation  
Time (s)

2.64 1.24 30 182.310

UAV 1

UAV 3

16

14

computationally more difficult.  Table 7 shows the new solution when the utilization constraints are eliminated and 
the total time objective is employed. 
 

     

i j ti/tik Path Distance

8 1 0.16
1 5 0.48
5 4 1.1
4 9 1.5

i j ti/tik Path Distance

8 2 0.16
2 3 0.44
3 7 0.78
7 6 1.1
6 9 1.5

Total Time  
(hrs)

Makespan 
(hrs)

Total 
Distance

Computation  
Time (s)

7.612

UAV 1

12

UAV 2

16

3 1.5 28
 

 
Both tables 6 and 7 show the tendency to assign all targets to one vehicle which is limited only by the 

simultaneous constraints placed on the targets and endurance.  The makespan for the total time method significantly 
increases when fewer vehicles are utilized.  

Interestingly, even though the constraints are relaxed and at least one constraint eliminated, the computation 
time increases, due to the increase in feasible alternatives.  This example shows the importance lower and upper 
bounds have on the computation time.  Better bounds imply a smaller feasible space and less computation time.  
This example also implies that other factors than the number of constraints and decision variables affect the 
computational efficiency of the MILP. 

VII. Conclusions 
The method of assignment employed by a team of UAVs may be mission specific.  Thus, certain methods may 

be preferred based on a given scenario.  The MILP formulations presented here show how various constraints can 
easily be added or removed to represent a variety of scenarios especially related to the precise engagement of UAV 
performed ISR. 

The min makespan method of minimizing the total engagement time is generally the most precise option when 
encountering a scenario as previously described.  It balances all routes to minimize the makespan or the latest arrival 
time of all vehicles to a landing site.  Although the min makespan optimization of the UAV assignment problem is 
more precise, its additional computation time may cause it to become impractical in many instances.  The cost 
function which minimizes the total time is the most computationally difficult of all three methods.  Without the 
utilization constraints, it would also tend to assign all targets to as few UAVs as is allowable by the endurance 
constraints.  The minimization of the routes all UAVs travel is a practical alternative to obtain an optimal solution 
with less computational difficulty.  When the utilization constraints are enforced, the total distance method becomes 
more precise in terms of ensuring all targets are covered in a minimal amount of time. 
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